

UF UNIVERSITY of FLORIDA

Background

Research Focus :

Trace metal (e.g., arsenic, iron, molybdenum) mobilization during recharge has affected the long-term viability of Managed Aquifer Recharge (MAR) techniques, including Aquifer Storage and Recovery (ASR) and Artificial Recharge (AR).

Since new Arsenic MCL (10 μ g/L), Arsenic has become primary constraint for MAR

Objective: Construct a 3-D reactive transport model of an ASR site to simulate arsenic mobilization and transport processes; use the calibrated model to simulate long-term AR operations

Test Hypothesis:

During recharge: • arsenic rich pyrite is oxidized, primarily by DO, releasing metals • metals sorb to newly precipitated HMOs near borehole

• native (H₂S rich) water is displaced

During recovery: • native (H₂S rich) water returns near borehole • reductive dissolution of HMOs releases metals back into solution • > 100 μ g/L As detected in ASR wells in Florida

Falling head values for use in numerical modeling

Evaluating Trace Metal Mobilization During Managed Aquifer Recharge

Stuart B. Norton and Mike D. Annable, University of Florida, Department of Environmental Engineering Sciences (contact: stuartnorton@me.com; annable@ufl.edu)

0.000002

- links transport code MT3DMS with geochemical code PHREEQ-C
- flow simulated using MODFLOW-2000
- more information at www.pht3d.org

• need to verify thermodynamic data, kinetic rates, and metal-complexation processes via batch/column studies and related models

Funding Partners: Southwest Florida Water Management District UF – Water Resources Research Center

City of Bradenton: Seth Kohn and Claude Tankersley